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Abstract

In the extensive usage of ontologies envisaged by the Semantic Web there is a compelling
need for expressing mappings between different elements of heterogeneous ontologies. State of
the art languages for ontology mapping enable to express semantic relations between homoge-
neous components of different ontologies; namely, they allow to map concepts into concepts,
individuals into individuals, and properties into properties. In many real world cases this is
not enough; for example when relations in an ontology correspond to a class in another on-
tology (i.e. reification of relations). To support this kind of interoperability we need therefore
richer mapping languages, offering constructs for the representation of heterogeneous map-
pings. In this paper, we propose an extension of Distributed Description Logics (DDL) with
mappings between concepts and relations. We provide a semantics of the proposed extension
and sound and complete characterisation of the effects of these mappings in terms of the new
ontological knowledge they entail.

1 Introduction

Most of the formalisms for distributed ontology integration based on the p2p architecture provide a
language (hereafter called mapping language) able to express semantic relations between concepts
belonging to different ontologies. These formalisms can express that a concept C in Ontology 1 is
equivalent (less general than, more general than) a concept D in Ontology 2 (see [15] for a survey).
Few mapping languages allow also to express semantic relations between properties in different
ontologies [8, 9, 4], and thus state that a relation R in Ontology 1 is equivalent (less general than,
more general than) a relation S in Ontology 2. These type of mappings are able to cope a large,
but not the totality of the heterogeneity between ontologies.

Assume, for instance, that a knowledge engineer builds an ontology of family unions containing
the binary relations marriedWith and partnerOf between two persons. Suppose also that a second
ontology engineer, asked to design a ontology for the same purpose, declares a concept Marriage,
whose instances are the actual civil or religious marriages and the concept civilUnion, whose
instances are all the civil unions. We can easily see that while the first ontology prefers to model
unions as relations, the second represents them as concepts. Despite this difference of style in
modelling, the concept Marriage and the relation marriedWith represent the same (or a very
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similar) real world aspect, and similarly with partnerOf and civilUnion. For instance, we can
expect that for all married couples in the first ontology, there is a corresponding marriage element
in the second ontology, and similarly for the civil unions. To reconcile the semantic difference
between the two heterogeneous representations we need a mapping language that allows to map
concept of one ontology to relations of another ontology.

Motivated by these observations, Ghidini and Serafini have illustrated in [11] the need of expres-
sive mapping languages that must incorporate not only homogeneous mappings, that is mappings
between concepts and mappings between relations of different ontologies, but also heterogeneous
mappings, that is mappings between concepts and relations in the sense illustrated above. They
present a preliminary investigation on how to define such expressive mapping language in the
framework of Distributed Description Logics (DDL) [14], a refinement of the multi-context logic
presented in [7, 8] to the DL-based framework for the formal representation of ontology, but they
do not go beyond preliminary statements and definitions, especially in the case of heterogeneous
mappings. In [9] the authors take a step forward and present a proposal and an algorithm for the
representation and reasoning with homogeneous mappings. In this paper we continue this stream
of work by addressing the more complex task of representing and reasoning with heterogeneous
mappings (as well as homogeneous mappings) which represent a specific relation between hetero-
geneous ontologies, namely the correspondence between a concept and a relation. Thus the goals
of this paper are: (i) to extend the framework of DDL, introducing mechanisms for the repre-
sentation of heterogeneous mappings between different ontologies, (ii) to define a clear semantics
for the proposed mapping language, and (iii) to investigate the logical properties of the proposed
mapping language.

2 A rich language for mappings

Description Logic (DL) has been advocated as the suitable formal tool to represent and reason
about ontologies. Distributed Description Logic (DDL) [14] is a natural generalisation of the
DL framework designed to formalise multiple ontologies pairwise linked by semantic mappings.
In DDL, ontologies correspond to description logic theories (T-boxes), while semantic mappings
correspond to collections of bridge rules (B).

In the following we recall the basic definitions of DDL as defined in [14, 11], and we provide a
new semantics for heterogeneous mappings.

2.1 Distributed Description Logics: the syntax

Given a non empty set I of indexes, used to identify ontologies, let {DLi}i∈I be a collection of
description logics1. For each i ∈ I let us denote a T-box of DLi as Ti. In this paper, we assume
that each DLi is description logic weaker or at most equivalent to ALCQIb, which corresponds to
ALCQI with role union, conjunction and difference (see [17]). Because of lack of space, we omit
the precise description of ALCQIb, and we assume that the reader is familiar with the syntax and
semantics of DDLs as described in [14].

We call T = {Ti}i∈I a family of T-Boxes indexed by I. Intuitively, Ti is the description logic
formalization of the i-th ontology. To make every description distinct, we will prefix it with the
index of ontology it belongs to. For instance, the concept C that occurs in the i-th ontology is

1We assume familiarity with Description Logic and related reasoning systems, described in [1].
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denoted as i : C. Similarly, i : C v D denotes the fact that the axiom C v D is being considered
in the i-th ontology.

Semantic mappings between different ontologies are expressed via collections of bridge rules. In
the following we use A, B, C and D as place-holders for concepts and R, S, P and Q as place-holders
for roles. We instead use X and Y to denote both concepts and roles.

Definition 1 (Homogeneous Bridge rules). An homogeneous bridge rule from i to j is an expression
defined as follows:

i : X
v−→ j : Y (into bridge rule) (1)

i : X
w−→ j : Y (onto bridge rule) (2)

where X and Y are either concepts of DLi and DLj respectively, or roles of DLi and DLj respec-
tively.

Bridge rules do not represent semantic relations stated from an external objective point of view.
Indeed, there is no such global view in the web. Instead, bridge rules from i to j express relations
between i and j viewed from the subjective point of view of the j-th ontology.

Bridge rules (1) and (2) with X and Y instantiated as concepts have been studied in [14]. Here-
after we will call them concept-into-concept and concept-onto-concept bridge rules. The concept-

into-concept bridge rule i : X
v−→ j : Y states that, from the j-th point of view the concept

X in i is less general than its local concept Y . Similarly, the concept-onto-concept bridge rule

i : X
w−→ j : Y expresses the fact that, according to j, X in i is more general than Y in j.

Therefore, bridge rules from i to j provide the possibility of translating into j’s ontology (under
some approximation) the concepts of a foreign i’s ontology. Note, that since bridge rules reflect a
subjective point of view, bridge rules from j to i are not necessarily the inverse of the rules from i
to j, and in fact bridge rules from i to j do not force the existence of bridge rules in the opposite
direction. Thus, the bridge rule

i : Article w−→ j : ConferencePaper

expresses the fact that, according to ontology j, the concept Article in ontology i is more general
than its local concept ConferencePapers, while the bridge rules

i : Article v−→ j : Article i : Article w−→ j : Article

say that, according to ontology j, the concept Article in ontology j is equivalent to its local concept
Article. Bridge rules (1) and (2) instantiated as bridge rules between roles (hereafter role-into-role
and role-onto-role bridge rules) formalize the analogous intuition for roles. For example, the bridge
rule:

i : marriedInChurchWith
v−→ j : marriedWith

says that according to ontology j, the relation marriedInChurchWith in ontology i is less general
than its own relation marriedWith.
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Definition 2 (Heterogeneous bridge rule). An heterogeneous bridge rule from i to j is an expres-
sion defined as follows:

i : R
v
−� j : C (role-into-concept bridge rule) (3)

i : R
w
−� j : C (role-onto-concept bridge rule) (4)

i : C
v
−� j : R (concept-into-role bridge rule) (5)

i : C
w
−� j : R (concept-onto-role bridge rule) (6)

where R is a role and C is a concept.

Bridge rules (3) and (4) state that, from the j-th point of view the role R in i is less general,
resp. more general, than its local concept C. Similarly, bridge rules (5) and (6) state that, from
the j-th point of view the concept C in i is less general, resp. more general, than its local role R.
Thus, the bridge rule

i : marriedInChurchWith
v
−� j : Marriage

expresses the fact that, according to ontology j, the relation marriedInChurchWith in ontology i
is less general than its local concept Marriage, while the bridge rules

i : civilUnion
v
−� j : partnerOf

i : civilUnion
w
−� j : partnerOf

say that, according to ontology j, the concept civilUnion in ontology j is equivalent to its local
relation partnerOf.

Definition 3 (Distributed T-box). A distributed T-box (DTB) T = 〈Ti, B〉 consists of a collection
Ti of T-boxes, and a collection B = {Bij}i 6=j∈I of bridge rules between them.

2.2 Distributed Description Logics: the semantics

The semantic of DDL, which is a refinement of Local Models Semantics [7, 8], assigns to each
ontology Ti a local interpretation domain. The first component of an interpretation of a DTB is a
family of interpretations {Ii}i∈I , one for each T-box Ti. Each Ii is called a local interpretation and
consists of a possibly empty domain ∆Ii and a valuation function ·Ii , which maps every concept
to a subset of ∆Ii , and every role to a subset of ∆Ii × ∆Ii . The interpretation on the empty
domain is used to provide a semantics for distributed T-boxes in which some of the local T-boxes
are inconsistent. We do not describe this aspect of DDL further. The interested reader can refer
to [14].

The second component of the DDL semantics are families of domain relations. Domain relations
define how the different T-box interact and are necessary to define the satisfiability of bridge rules.

Definition 4 (Domain relation). A domain relation rij from i to j is a subset of ∆Ii ×∆Ij . We
use rij(d) to denote {d′ ∈ ∆Ij | 〈d, d′〉 ∈ rij}; for any subset D of ∆Ii , we use rij(D) to denote⋃

d∈D rij(d).
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A domain relation rij represents a possible way of mapping the elements of ∆Ii into its domain
∆Ij , seen from j’s perspective. For instance, if ∆I1 and ∆I2 are the representation of time as
Rationals and as Naturals, rij could be the round off function, or some other approximation
relation. This function has to be conservative w.r.t., the order relations defined on Rationals
and Naturals. Domain relation is used to interpret homogeneous bridge rules according with the
following definition.

Definition 5 (Satisfiability of homogeneous bridge rules). The domain relation rij satisfies a
homogeneous bridge rule w.r.t., Ii and Ij, in symbols 〈Ii, rij, Ij〉 |= br, according with the following
definition:

1. 〈Ii, rij, Ij〉 � i : X
v−→ j : Y , if rij(X

Ii) ⊆ Y Ij

2. 〈Ii, rij, Ij〉 � i : X
w−→ j : Y , if rij(X

Ii) ⊇ Y Ij

where X and Y are either two concepts or two roles.

Domain relations do not provide sufficient information to evaluate the satisfiability of hetero-
geneous mappings. Intuitively, an heterogeneous bridge rule between a relation R and a concept C
connects a pair of objects related by R with an object which is in C. This suggests that, to evaluate
heterogeneous bridge rules from roles in i to concepts in j we need a relation that maps triples of
the form 〈object 1, relation name, object 2〉 from ontology i into objects of ∆Ij . As an example
we would like to map a triple 〈John, marriedWith, Mary〉 of elements from the first ontology into
the marriage m123 of the second ontology, with the intuitive meaning that m123 is the marriage
which correspond to the married couple composed of John and Mary. We first formally introduce
the triples 〈object 1, relation name, object 2〉 for a given ontology i.

Definition 6 (Admissible Triples). Let Ii be a local interpretation
〈
∆Ii , ·Ii

〉
for DLi. Let R be

the set of all atomic relations relations of DLi. We indicate with ΣIi the set of all triples 〈x1, X, x2〉
such that x1, x2 ∈ ∆Ii ; X ⊆ R; and (x1, x2) ∈

⋂
R∈X RIi .

Intuitively, 〈John, {marriedWith}, Mary〉 is an admissible triple in ΣIi if John is married with
Mary, or more formally if the pair (John, Mary) belongs to the interpretation of marriedWith in
Ii. Similarly, 〈John, {marriedWith, loves}, Mary〉 is an admissible triple in ΣIi is John also loves
Maryin Ii.

Definition 7 (Concept-role and role-concept domain relation). A concept-role domain relation
crij from i to j is a subset of ∆Ii ×ΣIj . A role-concept domain relation rcij from i to j is a subset
of ΣIi ×∆Ij .

The domain relation rcij represents a possible way of mapping pairs of RIi into elements of
∆Ij , seen from j’s perspective. For instance,

(〈John, {marriedWith}, Mary〉 , m123) ∈ crij (7)

represents the fact that m123 is an object in ontology j corresponding to the marriage between
John and Mary in ontology i, while

(〈John, {dancePartnerOf}, Mary〉 , couple124) ∈ crij (8)
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represents the fact that couple124 is an object in ontology j corresponding to the pair of dancers
composed of John and Mary (e.g., used to record results for dance competitions). This example
emphasises one of the main characteristics of the concept-role and role-concept domain relations,
that is the possibility for the same pair of objects in an ontology to correspond to different elements
in another ontology because they belong to different relations. As shown in the example above we
want to be able to “reify” the fact that John is married with Mary in the element m123, and the
fact that John dances with Mary in the different object couple124.

Given a set of roles X in the language of DLi, we use XIi to denote the set
⋂

R∈X RIi .

Definition 8 (Satisfiability of heterogeneous bridge rules). The role-concept domain relation
rcij satisfies a role-(into/onto)-concept bridge rule w.r.t., Ii and Ij, in symbols 〈Ii, rcij, Ij〉 |= br,
according with the following definition:

1. (Ii, rcij, Ij) |= i : R
v
−� j : C if for all (x1, x2) ∈ RIi and for all pairs ((x1, X, x2), x) ∈ rcij

with XIi ⊆ RIi , we have that x ∈ CIj

2. (Ii, rcij, Ij) |= i : R
w
−� j : C if for all x ∈ CIj there is a pair ((x1, X, x2), x) ∈ rcij, such that

XIi ⊆ RIi .

The concept-role domain relation crij satisfies a concept-(into/onto)-role bridge rule w.r.t., Ii and
Ij, in symbols 〈Ii, crij, Ij〉 |= br, according with the following definition:

3. (Ii, crij, Ij) |= i : C
v
−� j : R if for all x ∈ CIi , and for all pairs (x, 〈x1, X, x2〉) ∈ crij, it is

true that XIj ⊆ RIj ;

4. (Ii, crij, Ij) |= i : C
w
−� j : R if for all (x1, x2) ∈ RIj there is a pair (x, 〈x1, X, x2〉) ∈ crij,

such that XIj ⊆ RIj and x ∈ CIi .

Satisfiability of a role-into-concept bridge rule forces the role-concept domain relation crij to
map pair of elements (x1, x2) which belong to RIi into elements x in CIj . Note that, from the
definition of role-concept domain relation two arbitrary objects y1 and y2 could occur in a pair
(〈y1, X, y2〉 , y) with X different from {R} itself but such that XIi ⊆ RIi , Thus also this pair
(y1, y2) belongs to RIi and we have to force also y to be in CIj . In other words, we can say that
satisfiability of a role-into-concept bridge rule forces the role-concept domain relation to map pairs
of elements (x1, x2) which belong to R, or to any of its subroles X, into elements x in CIi .

Consider the bridge rule

i : marriedWith
v
−� j : Marriage (9)

Let (John, Mary) and (Philip,Joanna) be two married couples such that Ii |= marriedWith(John, Mary)
and Ii |= marriedInChurchWith(Philip, Joanna), with Ii |= marriedInChurchWith v marriedWith.
Let the concept-role domain relation crji contain (only) the two pairs

(〈John, {marriedWith}, Mary〉 , m123) (10)

(〈Philip, {marriedInChurchWith}, Joanna〉 , e345) (11)

Bridge rule (9) is satisfied if both m123 and e345 are instances of Marriage.
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Satisfiability of a role-onto-concept bridge rule forces the role-concept domain relation crij to
identify a corresponding pre-image (x1, x2) in RIi (or in any of its sub-roles) for all x in CIj . Thus
the bridge rule

i : marriedWith
w
−� j : Marriage (12)

is satisfied by the pairs (10) and (10) above, under the assumption that m123 and e345 are the only
elements in MarriageIj . The satisfiability of concept-into/onto-roles bridge rules is analogous.

The effects of all the bridge rules introduced in this Section are studied in detail in Section 3. We
only want to emphasise here one of the interesting characteristics of the heterogeneous mappings
by means of an example. Assume we have an ontology i containing three relations marriedWith,
marriedInChurchWith and dancePartnerOf. Assume also that there is an ontology j containing
three concepts Marriage, ReligiousMarriage, and DanceCouple, which intuitively describe the
same “real word entities” of the three relations of ontology i. Assume we want to capture this
correspondence by means of the following heterogeneous bridge rules:

i : marriedWith
≡
−� j : Marriage (13)

i : marriedInChurchWith
≡
−� j : ReligiousMarriage (14)

i : dancePartnerOf
≡
−� j : DanceCouple (15)

Assume also that Ii |= marriedInChurchWith v marriedWith. Then we would like to propagate
the hierarchical relation of subsumption between these two roles into the analogous hierarchical
relation between the corresponding concepts, that is Ij |= ReligiousMarriage v Marriage. This
fact is guaranteed by applying the rule (19) at page 9. On the contrary, assume that marriedWith
and dancePartnerOf are not related by any subsumption relation (as we do not want to impose
that all married couple dance together or that all dancing couples are married to each other)
but assume they only have a non-empty intersection. In this case we do not want to propagate
this information by inferring that Marriage has a non empty intersection with DanceCouple, as
intuitively an identifier of a Marriage is never an identifier of a DanceCouple, even if they concern
the same pair of persons. The usage of admissible triples in the role-concept domain relation gives
us the possibility to obtain this by allowing the same pair of objects in an ontology to correspond
to different elements in another ontology because they belong to different roles, as shown in (7)
and (8).

Definition 9 (Distributed interpretation). A distributed interpretation I of a DTB T consists of
the 4-tuple I = 〈{Ii}i∈I , {rij}i 6=j∈I , {crij}i 6=j∈I , {rcij}i 6=j∈I〉

Definition 10 (Satisfiability of a Distributed T-box). A distributed interpretation I satisfies the
elements of a DTB T according to the following clauses: for every i, j ∈ I

1. I � i : A v B, if Ii � A v B

2. I � Ti, if I � i : A v B for all A v B in Ti

3. I � Bij, if

• 〈Ii, rij, Ij〉 satisfies all the homogeneous bridge rules in Bij,

• 〈Ii, crij, Ij〉 satisfies all the concept-to-role bridge rules in Bij,
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• 〈Ii, rcij, Ij〉 satisfies all the role-to-concept bridge rules in Bij

4. I � T, if for every i, j ∈ I, I � Ti and I � Bij

Definition 11 (Distributed Entailment and Satisfiability). T � i : A v B (read as “T entails
i : A v B”) if for every I, I � T implies I �d i : A v B. T is satisfiable if there exists a I such that
I � T. Concept i : A is satisfiable with respect to T if there is a I such that I � T and AIi 6= ∅.

3 The effects of mappings

In the previous section we have defined a declarative language (of mappings) which allows to state
set-theoretic relations between the extensions of the concepts and roles in different ontologies (T-
boxes). Mappings can be thought of as inter-theory axioms, which constrain the possible models of
the theories representing the different ontologies. Thus, a set of mappings between two ontologies
allows to combine the knowledge contained in the two ontologies in order to derive new knowledge.
In this section we discuss the main effects of mapping in terms of the new ontological knowledge
they allow to infer. In particular, we characterise the mappings by means of sound and complete
inference rules from i to j as the one illustrated by Equation (16). For the sake of presentation
and lack of space we describe (and prove the statements of soundness for) simple versions of the
inference rules. The general versions of the rules are given in Figure 1, and the proofs of soundness
and completeness for the general version of the rules is given in [10].

3.1 Propagation of the concept hierarchy

The propagation of the concept hierarchy forced by mappings between concepts and is widely
described in [14]. The simplest version of this effect is described by the following rule:

i : A v B

i : A
w−→ j : C

i : B
v−→ j : D

j : C v D

(16)

where A, B, C and D are concepts. The general version of this rule is shown in Equation (21) of
Figure 1.

Proposition 1 (Concept into/onto concept). Rule (16) is sound.

Proof. Let y ∈ CIj . From the satisfiability of i : A
w−→ j : C there is an object x ∈ AIi such

that (x, y) ∈ rij. From the hypothesis we know that Ti |= A v B, and thus x ∈ BIi , and from the

satisfiability of i : B
v−→ j : D we have that y ∈ DIj . Thus Tj |= C v D.

3.2 Propagation of the role hierarchy

The first effect of mappings between roles concern the propagation of the role hierarchy across

ontologies. If P v Q is a fact of the T-box Ti, then the effect of the bridge rules i : P
w−→ j : R

and i : Q
v−→ j : S is that R v S is a fact in Tj.
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Formally, we describe this effect by means of the following rule:

i : P v Q,

i : P
w−→ j : R

i : Q
v−→ j : S

j : R v S

(17)

where each P, Q, R, and S is either a role or an inverse role. This rule can be obtained from
Equation (22) in Figure 1 by setting l = 1, p = 0, m = 0.

Proposition 2 (Role into/onto role). Rule (17) is sound.

Proof. Let (y1, y2) ∈ RIj . From the satisfiability of i : P
w−→ j : R there is a pair (x1, x2) ∈ P Ii

such that (x1, y1) ∈ rij and (x2, y2) ∈ rij. From the hypothesis we know that Ti |= P v Q, and

thus (x1, x2) ∈ QIi , and from the satisfiability of i : Q
v−→ j : S we have that (y1, y2) ∈ SIj . Thus

Tj |= R v S.

Remark 1. An open point concerns the extension of our framework in order to account for
transitive roles. It is well known that the unrestricted interaction between number restriction
and transitivity is a source of indecidability; moreover, the bridge rules as the one above may infer
additional subsumption relations among the roles. Therefore, guaranteeing appropriate restrictions
to ensure decidability is no longer a matter of analysing the “static” role hierarchy (e.g., a in the
case of SHIQ).

3.3 Propagation of the role domain and of the range restriction

The effect of the combination of mappings between roles and mappings between concepts is the
propagation of domain and range among relations linked by role-onto-role mappings. The simplest
version of this rule is the following:

i : ∃P.> v B

i : P
w−→ j : R

i : B
v−→ j : D

j : ∃R.> v D

(18)

where P, R are roles and B, D are concepts.
The rule above says that if the domain of P is contained in B and the appropriate bridge

rules hold, then we can infer that the domain of R is contained in D. A similar rule allows to
obtain j : ∃R−.> v D from i : ∃P−.> v B with the same bridge rules, thus expressing the
propagation of the range restriction. Rule (18) can be obtained from Equation (22) in Figure 1 by
setting l = 0, p = 0, m = 1. Analogously the rule for range restriction can be obtained by setting
l = 0, p = 1, m = 0.

Proposition 3 (Role domain and range restriction). Rule (18) is sound.

Proof. Let y1 ∈ ∃R.>Ij . Thus there is an object y2 ∈ ∆Ij such that (y1, y2) ∈ RIj . From the

satisfiability of i : P
w−→ j : R there is a (x1, x2) ∈ P Ii such that (x1, y1) ∈ rij and (x2, y2) ∈ rij.

From the hypothesis we know that Ti |= ∃P.> v B, and thus x1 ∈ BIi , and from the satisfiability

of i : B
v−→ j : D we have that y1 ∈ DIj . Thus Tj |= ∃R.> v D. Similarly for the range

restriction.
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3.4 Propagation of role hierarchy into concept hierarchy

The first effect of the heterogeneous bridge rules mapping roles into/onto corresponding concepts
is the propagation of the subsumption relations between these role into subsumption relations
between the corresponding concepts. The simplest form of this rule is:

i : P v Q

i : P
w
−� j : C

i : Q
v
−� j : D

j : C v D

(19)

The general version of this rule is presented in Equation (25).

Proposition 4 (Role hierarchy into concept hierarchy). Rule (19) is sound.

Proof. Let x ∈ CIj . From the satisfiability of i : P
w
−� j : C, there is a triple (x1, X, x2) in ΣIi

such that (x, 〈x1, X, x2〉) ∈ rcij with XIi ⊆ P Ii . (x1, x2) ∈ XIi from the definition of admissible
triple. Since Ii |= P v Q, we have that (x1, x2) ∈ QIi . From the satisfiability of the into-bridge

rule i : Q
v
−� j : D, we can conclude that x ∈ DIj .

3.5 Propagation of concept hierarchy into role hierarchy

An effect analogous to the one above is the propagation of the concept hierarchy into the role
hierarchy. The simplest form of this rule is:

i : A v B

i : A
w
−� j : R

i : B
v
−� j : S

j : R v S

(20)

The general version of this rule is presented in Equations (25) and (24).

Proposition 5 (Concept hierarchy into role hierarchy). Rule (20) is sound.

Proof. Let (x1, x2) ∈ RIj . From the satisfiability of the onto-bridge rule i : A
w
−� j : R there must

be a triple 〈x1, X, x2〉 of ΣIj and an x ∈ AIi , such that XIj v RIj , and (x, 〈x1, X, x2〉) ∈ crij.
The fact Ii |= A v B implies that x ∈ BIi and, from the satisfiability of the into-bridge rule

i : B
v
−� j : S, we can conclude that XIj v SIj , and therefore that (x1, x2) ∈ SIj .

Remark 2. As for the propagation of the role hierarchy due to role into/onto bridge rules, we
need to be careful with the modification of the role hierarchy due to bridge rules even in this case
(see Remark 1). In addition, the expression

⊔n
k=1 Sk with n = 0 represents the empty role R⊥.

The introduction of the empty role can be easily obtained with the axiom > v ∀R⊥⊥.
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i : A v
⊔n

k=1 Bk

i : A
w−→ j : C

i : Bk
v−→ j : Dk, for 1 ≤ k ≤ n

j : C v
⊔n

k=1 Dk

(21)

i : ∃(P u ¬(
⊔l

h=1 Qh)). (¬
⊔p

h=1 Ah) v (
⊔m

h=1 Bh)

i : P
w−→ j : R

i : Qh
v−→ j : Sh, for 1 ≤ h ≤ l

i : Ah
v−→ j : Ch, for 1 ≤ h ≤ p

i : Bh
v−→ j : Dh, for 1 ≤ h ≤ m

j : ∃(R u ¬(
⊔l

h=1 Sh)). (¬
⊔p

h=1 Ch) v (
⊔m

k=1 Dk)

(22)

i : P v Q

i : P
w
−� j : C

i : Q
v
−� j : D

j : C v D

(23)

i : P v ⊥R

i : P
w
−� j : C

j : C v ⊥
(24)

i : A v
⊔n

k=1 Bk

i : A
w
−� j : R

i : Bk

v
−� j : Sk for 1 ≤ k ≤ n

j : R v
⊔n

k=1 Sk

(25)

Figure 1: Sound and complete set of inference rules

11



4 Soundness and Completeness

An operator Bij can be defined on top of the general inference rules shown in Figure 1, similarly to
what happens in [14]. Given a DTB T = 〈Ti, Tj, Bij〉, we can define Bij(Ti) as an operator which
enriches the T-box Tj with all the conclusions of the rules in Figure 1 provided that Ti satisfies
the premises (in i) and that the bridge rules in the premise of the rule are among the bridge rules
of T.

Roughly speaking, given a set of bridge rules Bij from DLi to DLj, the operator Bij(·) takes
as input a T-box in DLi and produces a T-box in DLj, in accordance with the inference rules.

Theorem 1 (Soundness and Completeness). Let T12 = 〈T1, T2, B12〉 be a distributed T-box. Then:

T12 |= 2 : X v Y ⇐⇒ T2 ∪B12(T1) |= X v Y (26)

4.1 Soundness

As far as the soundness, it is enough to prove that if I |= T = 〈Ti, Tj, Bij〉, then Ij |= Bij(Ti).
Bij(Ti) contains four types of formulae, obtained with the application of the rules in 1. We analyse
these four rules one by one:

• Soundness of rule (21) is shown in [14].

• Let us consider rule (22). Suppose that j : ∃(R u ¬(
⊔l

h=1 Sh)).(¬
⊔p

h=1 Ch) v (
⊔m

k=1 Dk) ∈
Bij(Ti). Then the mappings i : P

w−→ j : R, i : Qh
v−→ j : Sh, for 1 ≤ h ≤ l, i : Ah

v−→
j : Ch, for 1 ≤ h ≤ p, and i : Bh

v−→ j : Dh, for 1 ≤ h ≤ m belong to thee bridge rules of
T. Let xj be an object in ∃(R u ¬(

⊔l
h=1 Sh)). (¬

⊔p
h=1 Ch)

Ij . Then there is a yj such that

the pair 〈x, y〉 ∈ R u ¬(
⊔l

h=1 Sh)Ij and yj ∈ ¬(
⊔p

h=1 Ch)Ij . From the satisfiability of the

role-onto-role bridge rule i : P
w−→ j : R, there is a 〈xi, yi〉 such that 〈xi, yi〉 ∈ P Ii . From

the satisfiability of all the role-into-role bridge rules i : Qh
v−→ j : Sh, for 1 ≤ h ≤ l we also

have that 〈xi, yi〉 ∈ ¬QIi
h , for all h and from the satisfiability of all the concept-into-concept

bridge rules i : Ah
v−→ j : Ch, for 1 ≤ h ≤ p we have that yi ∈ ¬AIi

h for all h. Thus we

can conclude that xi belongs to ∃(P u ¬(
⊔l

h=1 Qh)). (¬
⊔p

h=1 Ah)
Ii , and since Ti satisfies all

the premises of the rule, then xi ∈ (
⊔m

h=1 Bh)
Ii . We can now use the concept-into-concept

bridge rules i : Bh
v−→ j : Dh, for 1 ≤ h ≤ m to conclude that xj belongs to

⊔m
k=1 D

Ij

k , and
the proof is done.

• Let us consider rule (23). Suppose that j : C v D ∈ Bij(Ti) and that x ∈ CIj . From the

satisfiability of i : P
w
−� j : C, there is a triple (x1, X, x2) in ΣIi

such that (x, 〈x1, X, x2〉) ∈
rcij with XIi ⊆ P Ii . (x1, x2) ∈ XIi from the definition of admissible triple. Since Ii |= P v
Q, we have that (x1, x2) ∈ QIi . From the satisfiability of the into-bridge rule i : Q

v
−� j : D,

we can conclude that x ∈ DIj .2.

• Let us now consider rule (24). Suppose that j : C v ⊥ ∈ Bij(Ti) and that x ∈ CIj .

From the satisfiability of i : P
w
−� j : C, there is a triple (x1, X, x2) in ΣIi

such that

2This proof is the same proof of Proposition 4.
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(x, 〈x1, X, x2〉) ∈ rcij with XIi ⊆ P Ii . Thus, (x1, x2) ∈ P Ii , but since Ii |= P v ⊥R this is
impossible. Thus there is no x ∈ CIj and Ij |= C v ⊥.

• Let us consider rule (25). Suppose that j : R v
⊔n

k=1 Sk ∈ Bij(Ti). Suppose also that

(x1, x2) ∈ RIj . Then from the satisfiability of concept-onto-role i : A
w
−� j : R we know that

there is a pair (x, 〈x1, X, x2〉) with XIj ⊆ RIj and x ∈ AIi . Thus x ∈
⊔n

k=1 Bk from the fact
that Ti satisfies A v

⊔n
k=1 Bk. Let x ∈ Bk. From the satisfiability of the concept-into-role

bridge rule i : Bk

v
−� j : Sk we have that Xj ⊆ S

Ij

k . Thus, the pair (x1, x2) ∈ S
Ij

k from the

definition of admissible triple. Therefore (x1, x2) ∈
⊔n

k=1 S
Ij

k and the proof is done.

4.2 Completeness

Lemma 1. If Ij is an interpretation of Tj ∪Bij(Ti), then there is a model 〈Ii, Ij, rij, crij, rcij〉 of
〈Ti, Tj, Bij〉.

Proof. We organize the proof in five steps.

1. In the first step we build an interpretation Icc
i for Ti and a domain relation rC

ij , and show

that
〈
Icc

i , rC
ij , Ij

〉
satisfies all the homogeneous bridge rules between concepts.

2. In the second step we build an interpretation Irr
i for Ti and a domain relation rrr

ij and show

that
〈
Irr

i , rR
ij, Ij

〉
satisfies all the homogeneous bridge rules between roles.

3. In the third step we build the interpretation Ii
RC and the role-to-concept relation rcij, and

show that
〈
Ii

RC , rcij, Ij

〉
satisfies all the role-to-concepts bridge rules.

4. In the forth step we build the interpretation Ii
CR and the concept-to-role relation rcij, and

show that
〈
Ii

CR, crij, Ij

〉
satisfies all the concept-to-role bridge rules.

5. In the last step, we combine IC
i , IR

i , ICR
i , and IRC

i into an interpretation Ii of Ti, the
relations rC

ij and rR
ij into a domain relation rij, showing that 〈Ii, Ij, rij, crij, rcij〉 satisfies all

the bridge rules in Bij.

Building IC
i and rC

ij To build Icc
i and rC

ij , we report the proof described in [14].

For every onto-bridge rule between concepts i : A
w−→ j : C in Bij, and for every x ∈ CIj let

D1, . . . , Dn be the consequences of all the into-bridge rules between concepts, such that x 6∈ Dk

for 1 ≤ k ≤ n. Let IC(x))
i be an interpretation of Ti, and v be an elements of its domain, called

the preimages of x in IC(x)
i , such that the following conditions hold:

1. v ∈ AI
C(x)
i

2. v 6∈ B
IC(x)

i
1 ∪ · · · ∪B

IC(x)
i

m ;

where each Bk is the left hand side of the into bridge rule with consequence Dk. Let us prove the

existence of IC(x)
i and of the preimage of x in IC(x)

i . Assume by contradiction that there is no such

13



an interpretation, i.e., that for all interpretation Ii of Ti one of the above 2 conditions is false.
This implies that the following condition is true.

For all interpretations Ii of Ti and for all v ∈ ∆Ii , if v ∈ AIi then v ∈ BIi
k for some

1 ≤ k ≤ m
(27)

Condition (27) can be expressed with the ALCQIb-axiom

A v B1 t · · · tBn (28)

This implies that if IC(x)
i does not exist, then Ti |= (28). By the generalization of rule (16), we

have that
C v D1 t · · · tDn (29)

is contained in Bij(Ti). But this contradicts the initial hypothesis that x ∈ CIj , and x 6∈ D
Ij

k , for

all 1 ≤ k ≤ n. This implies the existence of IC(x)
i and of the preimage of x in IC(x)

i .
We repeat this construction for every x in C, and for all onto-bridge rules between concepts.

With no loss of generality, we can assume that the domains of the IC(x)
i ’s is disjoint from all the

others. We define IC
i as the union of all of them. In symbols:

Icc
i =

⋃
i : A

w−→ j : C ∈ Bij

x ∈ CIj

IC(x)
i

The domain relation rC
ij is defined as the set of pairs (v, x) where v is the selected elements of each

IC(x)
i .

Building IR
i and rR

ij As far as the homogeneous bridge rule between roles, we proceed in an

analogous way. For every onto-bridge rule i : P
w−→ j : R in Bij, and for every (x, y) ∈ RIj let

S1, . . . , Sn be the consequences of all the into-bridge rules between roles, such that (x, y) 6∈ Sk for
1 ≤ k ≤ n. Let C1, . . . , Cm and D1, . . . , Dl be the consequences of the into-bridge rules between
concepts, such that x 6∈ Ch, for 1 ≤ h ≤ m, and y 6∈ Dk for 1 ≤ k ≤ l. Let Ii

R(x,y) be an
interpretation of Ti, and v, w be two elements of its domain relation, called the preimages of x and

y in IR(x,y)
i , such that the following conditions holds:

1. (v, w) ∈ P I
R(x,y)
i

2. (v, w) 6∈ Q
IR(x,y)

i
1 ∪ · · · ∪Q

IR(x,y)
i

n ;

3. v 6∈ A
IR(x,y)

i
1 ∪ · · · ∪ A

IR(x,y)
i

l ;

4. w 6∈ B
IR(x,y)

i
1 ∪ · · · ∪B

IR(x,y)
i

m ;

where Qk is the left hand side of the into bridge rule between roles with consequence Sk; Ak and Bk

are the left hand side of the bridge rule between concepts with consequence Ck and Dk respectively.
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Let us prove the existence of Ii
R(x,y) and v, w. Assume by contradiction that there is no such

an interpretation, i.e., that for all interpretation Ii that satisfies Ti one of the above 4 conditions
are false. This implies that the following condition is true.

For all interpretations Ii of Ti and for all v, w ∈ ∆Ii , if (i) (v, w) ∈ P Ii , (ii) (v, w) 6∈ Qk

for 1 ≤ k ≤ n and (iii) w 6∈ AIi
k for 1 ≤ k ≤ l, then v ∈ BIi

k for some 1 ≤ k ≤ m
(30)

Condition (30) can be expressed with the ALCQIb-axiom

∃[P \ (Q1 t · · · tQn)].¬(A1 t · · · t Am) v B1 t · · · tBn (31)

This implies that if IR(x,y)
i does not exist Ti |= (31). By the generalization of rules (17) and (18),

we can infer that

∃[R \ (S1 t · · · t Sn)].¬(C1 t · · · t Cm) v D1 t · · · tDl (32)

is contained in Bij(Ti). But this contradicts the initial hypothesis that (x, y) ∈ RIj , (x, y) 6∈ S
Ij

k ,

x 6∈ C, jk and y 6∈ D
Ij

k . This implies that there must be an interpretation Ii
R(x,y) and a pair (v, w)

that satisfies conditions 1–4.
We repeat this construction for every (x, y) that belongs to the interpretation of any R which

is the consequence of an onto bridge rule. Again with no loss of generality we can assume that the
domain IR(x,y) is defined as:

IR
i =

⋃
i : P

w−→ j : R ∈ Bij

(x, y) ∈ RIj

IR(x,y)
i

The domain relation rR
ij contains all the pairs (v, x) and (w, y) where v and w are the preimages

of x and y w.r.t. IR(x,y).

Building ICR
i and crij Now we apply the very same method to build the role to concept

relation and the concept to role relations. For every concept-to-role onto bridge rule of the form

i : A
w−→ j : R, and for every (x, y) ∈ RIj let S1, . . . , Sn be the consequence of the concept-to-role

into bridge rules, such that (x, y) 6∈ S
Ij

k for 1 ≤ k ≤ n. Let IR(x,y)
i be an interpretation of Ti and

v an element of the domain of IR(x,y)
i , called the preimage of (x, {R}, y) in IR(x,y)

i . such that the
following conditions hold:

1. v ∈ AI
R(x,y)
i

2. v 6∈ B
IR(x,y)

i
k .

where Bk is the premise of the concept-to-role into bridge rule with consequence Sk. Let us prove

that IR(x,y)
i exists. Assume by contradiction that there is no such an interpretation, i.e., that for

all interpretation Ii of Ti one of the above 2 conditions is false. This implies that the following
condition is true.

For all interpretations Ii of Ti and for all v ∈ ∆Ii , if v ∈ AIi then v ∈ BIi
k for some

1 ≤ k ≤ n
(33)
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Condition (33) can be expressed with the ALCQIb-axiom

A v B1 t · · · tBn (34)

This implies that, if IR(x,y)
i does not exist, then Ti |= (34). By the generalization of rule (20) we

can infer that
R v S1 t · · · t Sn (35)

is in Bij(Ti). But this contradicts the initial hypothesis that (x, y) ∈ RIj and (x, y) 6∈ S
Ij

k for
1 ≤ k ≤ n. We repeat this construction for every (x, y) that belongs to RIj and for any concept-
to-role onto bridge rule. Again, with no loss of generality, we can assume that the domain of each
IR(x,y) is disjoint from the domains of the others. We define the interpretation Ii

CR as follows:

Ii
CR =

⋃
i : A

w−→ j : R ∈ Bij

(x, y) ∈ RIj

Ii
R(x,y)

and crij contains all the pairs (v, (x, {R}, y)) where v is the preimage of (x, {R}, y) in IR(x,y)
i .

Building IRC
i and rcij Consider a role-to-concept onto bridge rule i : P

w−→ j : C ∈ Bij.
For every x ∈ CIj let’s consider two cases. (i) there is at least a role-to-concept into bridge rule

i : Q
v−→ j : D with x 6∈ DIj (ii) there is no such a into bridge rule. In case (i) for all role-to-

concept into bridge rule i : Q
v−→ j : D, let IC(x)∧¬D(x)

i be an interpretation of Ti and (v, {P}, w) be

an admissible triple of IC(x)∧¬D(x)
i , called the preimage of x in IC(x)∧¬D(x)

i such that the following
conditions hold:

1. (v, w) ∈ P I
C(x)∧¬D(x)
i

2. (v, w) 6∈ QI
C(x)∧¬D(x)
i

Let us prove that IC(x)∧¬D(x)
i exists. Assume by contradiction that there is no such an interpre-

tation, i.e., that for all interpretation Ii of Ti one of the above 2 conditions is false. This implies
that the following condition is true.

For all interpretations Ii of Ti and for all v, w ∈ ∆Ii , if (v, w) ∈ P Ii then (v, w) ∈ QIi (36)

Condition (36) can be expressed with the ALCQIb-axiom

P v Q (37)

This implies that if IC(x)∧¬D(x)
i does not exist, then Ti |= (37). By the rule (19) we can infer that

C v D (38)

is in Bij(Ti). But this contradicts the initial hypothesis that x ∈ CIj and x 6∈ DIj . We repeat this

process for all the into bridge rules i : Q
v−→ j : D with x 6∈ DIj , and define

IC(x)
i =

⋃
i : Q

v
−� j : D ∈ Bij

x 6∈ DIj

IC(x)∧¬D(x)
i
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Notice that, since we are in the case in which there is at least a bridge rule i : Q
v
−� j : D with

x 6∈ DIj we have that IC(x)
i is not the empty model.

Consider now the case (ii) in which x belongs to all the consequences of the role-to-concept

into bridge rules. In this case let IC(x)
i be any model of Ti and (v, {P}, w) be an admissible triple

of IC(x)
i , called the preimage of x in IC(x)

i . IC(x)
i must exists otherwise Ti |= P v ⊥R and by bridge

rule (24), C v ⊥ ∈ Bij(Ti) contraddicting the fact that x ∈ CIj , i.e., that CIj is not empty.
We repeat the process for every x ∈ CIj and role-to-concept onto bridge rule. With no loss of

generality, we can assume that the domains the interpretations IC(x)’s are disjoint. So we define
Ii

RC as follows:

Ii
RC =

⋃
i : P

w−→ j : C ∈ Bij

x ∈ CIj

Ii
C(x)

and crij contains all the pairs ((v, {P}, w).x) where (v, {P}, w) is the preimage of x in IC(x)
i .

With no loss of generality we can again assume that the domain of interpretation of IC
i , IR

i ,
IRC

i and ICR
i are disjoint. Let define Ii = IC

i ∪IR
i ∪IRC

i ∪ICR
i . We also define rij = rC

ij ∪ rR
ij. Let

us show that I = 〈Ii, Ij, rij, crij, rcij〉 satisfies all the bridge rules in Bij.

• I |= i : B
v−→ j : D, Let (v, x) ∈ rij and v ∈ BIi . Then v is the preimage of x either

in IC(x)
i for some onto-bridge rule i : A

w−→ j : C, or in IR(x,y)
i for some onto-bridge rule

i : P
w−→ j : R, or in IR(y,x)

i for some onto-bridge rule i : P
w−→ j : R. In all the cases we

have that v ∈ DIj . Indeed if v 6∈ DIj , by construction, v should not be the preimage of x in
IC(x).

• I |= i : A
w−→ j : C. For every element of x ∈ CIj by construction there is a preimage

v ∈ AI
C(x)
i ⊆ AIi , such that (v, x) ∈ rC

ij ⊆ rij.

• I |= i : P
v−→ j : R, Let (v, w) ∈ P Ii and (x, y) ∈ r(v, w). If this is the case than v and w are

the preimages of x and y in IR(x,y). Notice that if (v, w) ∈ P Ii , they must be the preimages
of some x and y for the same sub-model of I, as each sub-model of Ii are not crossed.

• I |= i : Q
w−→ j : S, Let (x, y) ∈ SIj , then by construction there are two preimages v and w

of such that (v, w) ∈ QI
R(x,y)
i , and such that (x, y) ∈ rij(v, w).

• I |= i : Q
v−→ j : D, Suppose that ((v, X,w), x) ∈ rcij, we have to prove that

XIi ⊆ RIi =⇒ x ∈ DIj (39)

If ((v,X,w), x) ∈ rcij, then (v,X,w) is a preimage of x in some IC(x)
i , associated to an role-

to-concept onto bridge rule i : P
w−→ j : C, and X = {P}. If x ∈ DIj , then condition (39)

is satisfied. If, instead x 6∈ DIj , then by construction there is an interpretation IC(x)∧¬D(x)
i

such that P I
C(x)∧¬D(x)
i 6⊆ QI

C(x)∧¬D(x)
i . Since IC(x)∧¬D(x)

i in IC(x) and therefore in Ii, then
P Ii = XIi 6⊆ QIi , which implies that condition (39) is true.
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5 Related Work and Concluding Remarks

Recently, several proposals go in the direction of providing semantic mapping among different
ontologies (e.g. [16, 14, 3, 8]). However, to the best of our knowledge there is no specific work on
heterogeneous mappings as described in this paper. This in spite of the fact that there are several
attempts at providing some sort of mappings relating non-homogeneous elements. For example in
[4], it is possible to express the mapping

∀x.(∃y.R(x, y)→ C(x)) (40)

while, in the original version of DDL (see [14]), an analogous mappings can be established by
means of the formula

1 : ∃R.> v−→ 2 : C (41)

Note that both cases cannot be considered heterogeneous mappings because they relates the domain
of the relation R with the concept C. The limits of these approaches can be highlighted by the
following example.

Assume we want to impose that the relation marriedWithin ontology i is equivalent to the
concept Marriagein ontology j, and we only have mappings as in Equation (41). Then, we can
only state expressions of the form:

i : ∃marriedWith.> v−→ j : Marriage i : ∃marriedWith.> w−→ j : Marriage

But these mappings express something rather different from our initial goal as they map single
elements of a couple into marriages. Moreover, assume we also have a bridge rule mappings wives
in ontology i into women in ontology j as follows:

i : Wife v−→ j : Woman

together with the axiom Wife v ∃IsMarried.> in ontology i stating that a wife is a married entity.
From all this we can infer in ontology j that a wife is a marriage, i.e., Wife v Marriage. The
problem in this approach lies in the fact that in mapping the two ontologies, we have identified
the participants of a relation, (the married person) with the relation itself (the marriage).

In the same spirit of the above cited approaches, but in the area of federated databases, the
work described in [2] provides a formalisation of heterogeneous mappings between concepts and
relations. In this work the authors define five types of correspondences between concepts and
properties, and provide the semantics of these correspondences as follows, where A is a concept
and R is a property (i.e. binary relation);

Relation Semantics
A is equivalent to R ∀x.(A(x)↔ ∃y.R(y, x))
A is more general to R ∀x.(∃y.R(y, x)→ A(x))
A is less general to R ∀x.(A(x)→ ∃y.R(y, x))
A and R do overlap ∃x.(A(x) ∧ ∃y.R(y, x))
A and R do not overlap ∀x.(A(x)→ ¬∃y.R(y, x))

This semantics is similar to the encoding described in Equation (40). The only difference is that
they considers the range of the relation instead of the domain. Therefore, this approach suffers of
the same limitations described early on.
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The work presented in this paper is clearly connected to the well known modelling process
of reification (aka objectification) adopted in UML or ORM (see [12, 13]). As described in [12],
this corresponds to think of certain relationship instances as objects. In UML this is supported
by means of association classes, while in Entity-Relationship diagram this is often mediated by
means of weak entities. Note that these modelling paradigms do not support rich inter-schema
axioms in the spirit of ontology mappings as described in [16].

There are other modelling formalisms which enable the bridging between relations and classes
in the context of Description Logics. In particular, the work on DLR (see [5]), specifically w.r.t.
the technique for encoding n-ary relations within a standard Description Logic, and [6]. The
advantage of our approach lies in the fact that the local semantics (i.e. the underlying semantics
of the single ontology languages) does not need to be modified in order to consider the global
semantics of the system. Specifically, there is no need to provide an explicit reification of relations
since this is incorporated into the global semantics.

The language and the semantics presented in this paper constitute a genuine contribution in
the direction of the integration of heterogeneous ontologies. The language proposed in this paper
makes it possible to directly bind a concept with a relation in a different ontology, and vice-versa.
At the semantic level we have introduced a domain relation that maps pairs of object appearing in
a relation into objects and vice-versa. This also constitute a novelty in the semantics of knowledge
integration. Finally we have shown soundness and completeness of the effects of the mappings and
we leave the study of decidability and the definition of a reasoning algorithm for future work.
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